- 作者:老汪软件技巧
- 发表时间:2024-01-01 04:00
- 浏览量:
GPU的显存占用和算力利用直接影响模型的训练速度
显存一直占用,但是显卡使用率大多数情况为0
GPU利用率低问题
1.提高线程数
2.打开
# 在pytorch 加载数据时提高线程数,打开pin_memory
torch.utils.data.DataLoader(image_datasets[x],
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True)
3.数据预处理占用比较久
中的数据预处理
# dict(
# type='Expand',
# mean=img_norm_cfg['mean'],
# to_rgb=img_norm_cfg['to_rgb'],
# ratio_range=(1, 2)),
# dict(
# type='MinIoURandomCrop',
# min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
# min_crop_size=0.3),
这部分注释掉会比较快
暂时不知道如何处理
参考链接:
模型训练 GPU利用率低,占用低怎么破 gpu使用低-Ning的博客-CSDN博客
using too much cpu · Issue #4488 · open-mmlab/ ·
训练加速--一个可能忽视的细节(也一样),为什么显卡使用率老是为0?的博客-CSDN博客
深度学习训练时GPU利用率忽高忽低如何解决? - 知乎 ()
【深度学习】踩坑日记:模型训练速度过慢,GPU利用率低_模型跑的慢的原因-CSDN博客
深度强化学习遇到问题:模型训练速度过慢、GPU利用率较低,CPU利用率很低问题总结与分析。 - 知乎 ()