• 作者:老汪软件技巧
  • 发表时间:2024-09-15 11:01
  • 浏览量:

元象 XVERSE 发布中国最大 MoE 开源模型:

XVERSE-MoE-A36B,该模型总参数 255B,激活参数 36B,达到 100B 模型性能的「跨级」跃升。

同时训练时间减少 30%,推理性能提升 100%,使每 token 成本大幅下降。

在多个权威评测中,元象 MoE 效果大幅超越多个同类模型。

包括国内千亿 MoE 模型 Skywork-MoE、传统 MoE 霸主 Mixtral-8x22B 以及 3140 亿参数的 MoE 开源模型 Grok-1-A86B 等。

MoE(Mixture of Experts)是业界最前沿的混合专家模型架构 ,将多个细分领域的专家模型组合成一个超级模型,打破了传统扩展定律(Scaling Law)的局限,可在扩大模型规模时,不显著增加训练和推理的计算成本,保持模型性能最大化。

出于这个原因,行业前沿模型包括谷歌 Gemini-1.5、OpenAI 的 GPT-4 、马斯克旗下 xAI 公司的 Grok 等大模型都使用了 MoE。

值得一提的是,元象「高性能全家桶」系列全部开源,无条件免费商用,让海量中小企业、研究者和开发者能按需选择。

中国最大 MoE 开源模型

今年 4 月,元象推出 XVERSE-MoE-A4.2B,与传统 MoE(如 Mixtral 8x7B)将每个专家大小等同于标准 FFN 不同,元象采用更细粒度的专家设计,每个专家大小仅为标准 FFN 的四分之一,提高了模型灵活性与性能;还将专家分为共享专家(Shared Expert)和非共享专家(Non-shared Expert)两类。

共享专家在计算过程中始终保持激活状态,而非共享专家则根据需要选择性激活。这种设计有利于将通用知识压缩至共享专家参数中,减少非共享专家参数间的知识冗余。

此次推出 XVERSE-MoE-A36B,继续在 MoE 效率和效果方面进行技术创新。

(1)效率方面

MoE 架构与 4D 拓扑设计:MoE 架构的关键特性是由多个专家组成。由于专家之间需要大量的信息交换,通信负担极重。为了解决这个问题,我们采用了 4D 拓扑架构,平衡了通信、显存和计算资源的分配。这种设计优化了计算节点之间的通信路径,提高了整体计算效率。

专家路由与预丢弃策略:MoE 的另一个特点是 “专家路由机制”,即需要对不同的输入进行分配,并丢弃一些超出专家计算容量的冗余数据。为此团队设计一套预丢弃策略,减少不必要的计算和传输。同时在计算流程中实现了高效的算子融合,进一步提升模型的训练性能。

通信与计算重叠:由于 MoE 架构的专家之间需要大量通信,会影响整体计算效率。为此团队设计了 “多维度的通信与计算重叠” 机制,即在进行参数通信的同时,最大比例并行地执行计算任务,从而减少通信等待时间。

(2)效果方面

专家权重:MoE 中的专家总数为 N ,每个 token 会选择 topK 个专家参与后续的计算,由于专家容量的限制,每个 token 实际选择到的专家数为 M,M